Math 3210
Tutorial 6
Brief Midterm Review

Just one long example:
What is the role of Gaussian elimination and how does it help us with finding optimal solution + how does it link with our previous example???
*. Recall Example from lecture notes:

Now what if I want to move from one basic solution to the other?

What if I want to move my base variable to x_{1}, x_{5}, X_{σ}. Change corresponding vector to $\left(\begin{array}{lll}10 & 0 \\ 0 & 0 & 1\end{array}\right) . B_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

Recall our previous examples + theory:

When we go from one basic solution to the other let innitally we have

Recoll sume methody in the cal culation of inverse.

$$
\left(\begin{array}{l:l|l}
\beta & 1000 \\
& 0010 \\
& 001
\end{array}\right)\left(\begin{array}{cc:c}
100 & B^{-1} I \\
010 & h^{B^{-1}} \\
001 &)
\end{array}\right)
$$

Put it back to our exumple.

Now we wont to maximised.

$$
\left.\begin{array}{cc}
4 x_{1}+2 x_{2}-3 x_{3}=x_{0} & \text { W.R.T. } \\
x_{1}+x_{2}-x_{3} \leq 5 & \text { under stane } \\
2 x_{1}-3 x_{2}+x_{2} \leq 3 & C=4 x_{1}+2 x_{2}+3 x_{3}+\left(\begin{array}{l}
4 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1 \\
1
\end{array}\right) \\
8
\end{array}\right)
$$

solution

- Note we chose which ¿\{ basic variable to enter by
$C_{j}-z_{j}$ when $z_{j}=y_{j} \cdot C_{B}$
Then we chose which variate to go by minimising positive
 $\frac{x_{r}}{y_{j r}}$ where x_{j} is enteric
Wort to minimise $\frac{x_{r}}{y_{1 r}} \quad r=4,5,6$

With some elimination, we con get

X_{2} is enterimy
$y_{2}=\binom{-1.5}{\frac{2.9}{0.5}} \quad x=\left(\begin{array}{l}1.5 \\ \frac{2.5}{2.5} \\ 2.5\end{array}\right) \quad x_{4}$ is leaving.
X_{2} is enterim.

$$
y_{2}=\binom{-1.9}{\frac{2.9}{0.5}} \quad x=\left(\begin{array}{c}
1.5 \\
\frac{5.5}{2.5} \\
2.5
\end{array}\right) \quad x_{4} \quad \text { is leaviny. }
$$

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X
X_{1}	1	0	-0.4	0.6	0.2	0	3.6
X_{2}	0	1	-0.6	0.4	-0.2	0	1.4
X_{6}	0	0	-0.2	-0.2	0.6	1	1.8
		1.0 .2	-9.2	-0.4			$C_{B}=\left(\begin{array}{l}4 \\ 2 \\ 0\end{array}\right)$

